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Abstract. We construct a graph model for ACP_, the algebra of communicating processes with
silent steps, in which Koomen’s Fair Abstraction Rule (KFAR) holds, and also versions of the
Approximation Induction Principle (AIP) and the Recursive Definition & Specification Principles
(RDP&RSP). We use this model to prove that in ACP, (but not in ACP!) each computably
recursively definable process is finitely recursively definable.

Introduction

Process algebra is an algebraical theory of concurrency, i.e., a theory about
concurrent, communicating processes. Almost anything can constitute a process:
the execution of a program on a computer, or the execution of an algorithm by a
person, but also a game of chess or the behavior of a vending machine.

The starting point for process algebra is the modular structure of concurrent
processes at a given level of abstraction: we consider systems built up from certain
basic processes by means of composition tools, including sequencing, alternative
choice and parallel composition.

Process algebra tries to find laws or axioms for these composition operators, based
on some a priori considerations of what features concurrent communicating proces-
ses should certainly have. Thus, we use the axiomatic method; after having estab-
lished the axioms we can study different models of the theory, thus obtaining actual
semantics.

* This work is sponsored in part by Esprit Project No. 432, An integrated Formal Approach to
Industrial Software Development (Meteor).
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Central to theories of concurrency is the solving of recursive equations (or
equivalently, the finding of fixed points). In this paper, we investigate a model for
the Algebra of Communicating Processes with abstraction (ACP,), in which all
guarded recursive specifications have unique solutions. Moreover, we can describe
fairness in this model. Also in our algebraic theory, we can discuss fairness through
the use of Koomen’s Fair Abstraction Rule (KFAR).

KFAR expresses the idea of fairness in process algebra, and is the translation in
process algebra of an idea of C.J. Koomen of Philips Research (see [19]). KFAR
was first formulated in [8], and its usefulness in protocol verification was demon-
strated in [2, 3, 8, 9, 20, 26]. KFAR expresses the idea that, due to some fairness
mechanism, abstraction from internal steps will yield an external step after finitely
many repetitions; to be more precise, in the process 7,(x), obtained from x by
abstracting from steps in I, the steps in I will be fairly scheduled in such a way
that eventually a step outside I is performed.

KFAR 1is the algebraic formulation of this idea, whereas the semantical
implementation of fairness is already implicit in the notion of bisimulation on
graphs, so is already implicit in the work of Milner [23]. Some other recent papers
on fairness are [4, 5, 13, 14, 16, 17, 18, 22, 25].

When we use KFAR, all abstractions will be fair. Maybe this is too optimistic a
model, and the theory should be able to describe situations where some abstractions
are fair and others are not. Probably, an extension of the theory where this would
be possible, will turn out to be rather complex.

This paper is about process algebra, but it is not an introductory paper about
process algebra; before reading this paper, the reader is advised to read some other
papers on process algebra first, for example, [11], or perhaps [1] (in Dutch). In this
paper, we do the following things. In Section 1, we review the theory ACP,, and
extra axioms and rules SC, PR and KFAR. In Section 2, we define and discuss
labeled graphs, elements of the set G,. In Section 3, we prove that if we divide
out the equivalence relation <= (rooted t3-bisimulation) on G,, we obtain a
model of ACP,+SC+PR+KFAR, and we can even add some extra axioms
(HA, ET, CA).

In Section 4, we formulate the Approximation Induction Principle (AIP), which
says that two processes are equal if all their projections are equal, and prove that
AIP holds in G, for all finitely branching and bounded graphs. In Section 5, we
look at recursive specifications, and formulate the Recursive Definition Principle
(RDP) and the Recursive Specification Principle (RSP). Together, these principles
say that a specification has a unique solution. We prove that RDP+ RSP hold in
G, for all guarded specifications.

In Section 6, we prove that every computable graph is recursively definable by a
finite guarded specification, and we use this result in Section 7 to prove that any
process recursively definable by a computable guarded specification is already
recursively definable by a finite guarded specification. In Section 8, we note that
the abstraction operator is essential to prove these theorems.



Consistency of Koomen’s Fair Abstraction Rule 131

1. The algebra of communicating processes with silent moves

The axiomatic framework in which we present this document is ACP,, the algebra
of communicating processes with silent steps, as described in [7]. In this section,
we give a brief review of ACP;.

We start with an informal introduction to the composition operators used. A more
elaborate and technical introduction can be found in [7].

Process algebra starts from a finite collection A of given objects, called atomic
actions, atoms or steps. These actions are taken to be indivisible, usually have no
duration and form the basic building blocks of our systems. The first two composi-
tional operators we consider are -, denoting sequential composition, and “+* for
alternative composition. If x and y are two processes, then x- y is the process that
starts the execution of y after the completion of x, and x+y is the process that
chooses either x or y and executes the chosen process. Each time a choice is made,
we choose from a set of alternatives. We do not specify whether the choice is made
by the process itself or by the environment. Axioms Al-5 in Table 1 below give the
laws that “+” and *““-” obey. We leave out “-”” and brackets as in regular algebra,
so xy+z means (x- y)+z

Table 1.
ACP,.

x+y=y+x Al XT=X T1
x+(y+z)=(x+y)+z A2 TX+X=TX T2
X+x=x A3 a(tx+y)=al(rx+y)+ax T3
(x+y)z=xz+yz A4

(xy)z=x(yz) AS

x+d=x A6

3x=38 A7

alb=bla C1

(a]b)|c=al(b]c) Cc2

dla=3 C3

1
|
|
|
|
|
|
|
!
!
|
|
|
|
|
I
|
1
|
|
l
x|y=x[Ly+ylx+x|ly ~ CM1 |
1
1
|
|
|
|
|
|
|
|
|
t
!
|
|
|
|
|
|
|
|
|
1
|
|
|

al x=ax CM2 T x=1x T™1
(ax)|Ly=a(x]|y) CM3 (rx) L y="(x|y) T™2
(x+y)lz=x|Lz+y| 2 CM4 T|x=3 TC1
(ax)|b=(a|b)x CMs5 x|T=23 TC2
a|(bx)=(a|b)x CMé6 (mx)|y=x|y TC3
(ax)|(by)=(alb)(xy)  CMT | x|(p)=xy TC4
(x+y)|z=x|z+y|z CMS8
x|(y+z)=x|y+x|z CM9

ap(t) =1 DT

() =1 TIt
dy(a)=a ifagH D1 T(a)=a ifagl TI2
dy(a)=8 ifaeH D2 T(a)=1 ifael TI3
Ip(x+y)=dg(x)+au(y) D3 T (x+y)=7,(x)+7(y) Ti4
B (xy) =3g(x) 0 () D4 T (xy)=7(x) 7, (y) TI5
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On intuitive grounds x(y+z) and xy+xz present different mechanisms (the
moment of choice is different), and therefore, an axiom x(y+z)=Xxy+xz is not
included.

We have a special constant “3” denoting deadlock, the acknowledgement of a
process that it cannot do anything anymore, the absence of an alternative. Axioms
A6, 7 give the laws for “3”.

Next, we have the parallel composition operator ““||””, called merge. The merge
of processes x and y will interleave the actions of x and y, except for the communica-
tion actions. In x|y, we can either do a step from x, or a step from y, or x and y
both synchronously perform an action, which together make up a new action, the
communication action. This trichotomy is expressed in axiom CM]1. Here, we use
two auxiliary operators: | ” (left-merge) and “|” (communication merge). Thus
x| y is x|y, but with the restriction that the first step comes from x, and x|y is
x ||y with a communication step as the first step. Axioms CM2-9 give the laws for
“|L* and “|”. On atomic actions, we assume the communication function given,
obeying laws C1-3. Finally, we have on the left-hand side of Table 1 the laws for
the encapsulation operator “dy”". Here H is a set of atoms, and “dy " blocks actions
from H, renames them into 8. The operator “95” can be used to encapsulate a
process, i.e., to block communications with the environment.

The right-hand side of Table 1 is devoted to laws for Milner’s silent step T (see
[20]). Laws T1-3 are Milner’s t-laws, and TM1, 2 and TC1-4 describe the interaction

of 7 and merge. Finally, 7; is the abstraction operator that renames atoms from [
into 7.

1.1. Signature

S (sorts): A (a finite set of atomic actions),
P (the set of processes; A< P),
F (functions): +:PXP->P (alternative composition or sum),

“:PxP->P  (sequential composition or product),
|:PxP->P (parallel composition or merge),

L:PxP->P (left-merge),

|:PxP->pP (communication merge; |:AX A- A is given),

dy:P->P (encapsulation; H < A),

:P>P (abstraction; I < A—{5},
C (constants): deA (deadlock),

teP-A (silent or internal action).

1.2. Axioms
These are presented in Table 1. Here a,b,ce A, x,y,ze L Hc A,and I < A—{3}.

1.3. Digression

Let us consider for a moment the intuitive meaning of the silent step 7. A useful

Intuition is the following: suppose we have a machine executing a process, and we
can only observe the machine starting and stopping,

. and the beginning of atomic
actions. Then 7 stands for zero or more machinesteps
3

i.e., the machine is running
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for a certain period of time (which possibly has no duration), and we can observe
no action beginning.

This intuition can help to understand the r-laws T1-3:

T1: ar=a for, in both cases, we see a beginning as soon as the machine starts,
next the machine runs for a while, and then stops.

T2: 7x+x=1x for 7 can also be zero machinesteps: when executing x, the
machine can start x right away; note that not rx =x for, when executing rx, the
machine can also run for a while before starting x.

T3: a(rx+y)+ax=a(rx+y) for, when the machine executes a(tx+y), we can
see a begin and after some time the machine can start x (but not y).

Now in [27] the empty process ¢ is discussed in process algebra. The constant €
satisfies the laws ex = xe=1x, and can therefore be considered to stand for zero
machinesteps.

This led Koymans and Vrancken to consider a new constant , standing for one
or more machinesteps. We get the crucial equation

T=m+e.

The hidden step m is the subject of current research by Baeten and Van Glabbeek.
The only reference as yet is [1] (in Dutch)'.

The constant m obeys 1-laws T1 and T3, but not law T2. Instead of T2, a different
law can be chosen. We can define a hiding operator m; that renames actions into
M, and it seems that this form of hiding works very well for system verification.
Abstracting to T means that we abstract further than when we abstract to m; it is
possible to have a two-tiered abstraction: first to m, and then from  to .

Some nice properties of m are: )

(1) We can take m€ A, i.e., all laws of ACP that hold for atomic actions also
hold for m;

(2) The set of finitely branching process graphs modulo (an appropriate notion
of) bisimulation is a model for ACP with m; this is not the case for T, see Example
3.17.

1.4. Standard concurrency

Often we expand the system ACP, with the following axioms of Standard Concur-
rency (see Table 2). A proof that these axioms hold in the initial algebra of ACP,
can be found in [7].

Table 2.

xlLylLz=xL (=2 SC1

(x|ay) [ z=x](ay L 2) sC2
x|y=y|x SC3
x[ly=ylx Sc4
x|(ylz)=(x]|y)|z SCs
x| llz2)=(x][y) ]z SC6

! Note added in proof: now there are references [28] and [29].
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1.5. Projection
Reasoning about processes often uses a projection operator

7 P>P (n=1),
which ‘cuts off’ processes at depth n (after doing n steps), but with the understanding

that T-steps are ‘transparent’, i.¢., a 7-step does not raise the depth. Axioms for m,
are in Table 3.

Table 3.
m.(a)=a PR1 ma(1) =1 PRT1
m(ax)=a PR2 7w, (1x) =T1m,(X) PRT2

Turr(ax) = am,(x) PR3
To(xty)=m(x)+m(y)  PR4

1.6. Koomen’s Fair Abstraction Rule

Koomen’s Fair Abstraction Rule (see [8]) is a proof rule which is vital in algebraic
computations for system verification, and expresses the fact that, due to some fairness
mechanism, abstraction from ‘internal’ steps will yield an ‘external’ step after finitely
many repetitions. The simplest form of the rule is KFAR;:

if x and y are processes such that x=i-x+y, and i€ I,
then 7,(x)=7- 7,(y).

In general, the algebraic formulation is parametrized by k = 1, indicating the length
of an internal cycle.

VneZ, x,=iX,ety, (i.€l)

T1(Xn) =777 ( ) ym)

meZ,

KFAR,

This formulation is somewhat complicated. Therefore, we will write out in full the
cases k=1 and k=2. First KFAR;:

x=ix+y (iel)

. p—— KFAR,.
Then KFAR,:
Xo = IpXy + Yo
SZLX%TN gpaR,.

T(x)=77,(yot+ 1)
In Section 3, we will find a model for the theory

ACP,+SC+PR+KFAR, +KFAR,+- - -,

as defined in Sections 1.1-1.6.
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1.7. Example
Suppose someone tosses a coin until heads comes up. He performs the process
P =toss - (tail - P+ heads).
We define I ={toss, tail}. We write
P=toss: Q+3, Q =tail - P+heads,
so by applying KFAR, we get
7(P)=1-7,(8+heads) =7 - heads,

so that eventually heads comes up.

1.8. Note

We finish this section by mentioning that in [26] a generalization of KFAR,,
called the Cluster Fair Abstraction Rule (CFAR), is introduced, by which clusters
of internal steps can be handled that do not form a cycle.

2. Graphs

In this section we will define the elements of the model that will be constructed
in Section 3.

Definition 2.1. A rooted directed multigraph (which we will call graph for short) is
a triple (NODES, EDGES, ROOT) with the following properties:

(a) NODEs is a set;

(b) EDGES is aset; with each e € EDGES there is associated a pair (s, ) from NODES.
We say e goes from s to t, which we notate by

)= or @ e ifs=t

(c) ROOTE NODES.
Notation: g=(NODES(g),EDGES(g),R00T(g)).

Definition 2.2. Let g be a graph. A path 7 in g is an alternating sequence of nodes
and edges such that each edge goes from the node before it to the node after it. We
will only consider paths that are finite or have order type w. Thus, a path looks like

- @ eq, e, e o ey :

or
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We say 7 starts at s, (in the pictured situations) and, if o is finite, that 7 goes from
sy to s, If 7 goes from s, to o, 7 is a cycle, and any node in a cycle is called cyclic,
a node not on any cycle is acyclic. If s, t € NODEs(g), we say t can be reached from
s if there is a finite path going from s to .

Remark 2.3. We will only consider graphs in which each node canbe reached from
the root.

Definition 2.4. Let g be a graph, s € NODEs(g).

(a) The out-degree of s is the cardinality of the set of edges starting at s; the
in-degree of s is the cardinality of the set of edges going towards s.

(b) s is an endnode or endpoint of g if the out-degree of s is 0.

(c) gis a tree if all nodes are acyclic, the in-degree of the root is 0 and in-degree
of all other nodes is 1.

(d) The subgraph (g), of s is the graph with root s and with nodes and edges
all those nodes and edges of g that can be reached from s.

Definition 2.5 (labeled graphs). Let B, C be two sets, and « an infinite cardinal
number. We define G, (B, C) (the set of labeled graphs) to be the set of all graphs
such that

(1) each edge is labeled by an element of B;

(2) each endnode is labeled by an element of C;

(3) the out-degree of each node is less than «.

Two elements of G,.(B, C) are considered equal if they only differ in the names of
nodes or edges.

Definition 2.6. Let B, C, « be given.

(a) Gy (B, C) is the set of finitely branching labeled graphs;

(b) T.(B,C)={geG,(B, C):g is a tree} is the set of labeled trees;

(c) R(B, C) ={geGy,(B, C):NoDEs(g) UEDGES(g) is finite} is the set of finite
or regular labeled graphs;

(d) GX(B,C)={geG,(B,C):g has acyclic root} is the set of root-unwound
labeled graphs.

The following definition is taken from [10], where most of the above terminology
can also be found.

Definition 2.7 (root-unwinding). Let B, C, « be given. We define the root-unwinding
map p:G,.(B, C)>G.(B, C) as follows: Let g€G,.(B, C).
(a) NoDEs(p(g)) = NODEs(g) w{r}, where r is a ‘fresh’ node:

EDGES(p(g)) = EDGES(g) U {@—3@ S(®)e EDGES(g)};

(¢) rooT(p(g))=r;
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(d) labeling is unchanged; if RooT(g) has a label, r will get that label;
(e) nodes and edges which cannot be reached from r are discarded.

Remark 2.8. (1) For all geG, (B, C), we have p(g)e G%(B, C).
(2) If geGL(B, C), then g =p(g).

Example 2.9. (1) If g looks as shown in Fig. 1(a), then p(g) is the graph shown in
Fig. 1(b).

Fig. 1.

(2) If g is the graph shown in Fig. 2(a), then p(g) looks as shown in Fig. 2(b).
(Note that when we picture graphs, we will not display names of nodes and edges,
and only give their labels; we indicate the root by “-o”,

(a)

Fig. 2.

3. The model

We use the labeled graphs introduced in Section 2 to construct a model for ACP,.

Definition 3.1. Let A be a given finite set of atoms, 3 € A, 7€ A. Let a communication
function |: AX A> A be given, which is commutative and associative, such that
5|la=3 for all ae A.

We will use the symbol | to denote successful termination (whereas 3 denotes
unsuccessful termination). Define the set of process graphs by

G, =G, (A, —{8},{3,{}) {0}

Here « is some infinite cardinal, A.=Au{r}, and O is the graph -°— (a single
node labeled by |). Thus edges are labeled by elements of A,—{8}, and endpoints
by 8 or |.
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3.1. Bisimulations

Next we will define an equivalence relation on G,, which will say when two
graphs denote the same process. This is the notion of bisimulation (also see [7, 10,
11]). First we define the label of a path in the following definition.

Definition 3.2. Let geG,, and 7 a path in g.
(1) The label of , I(m), is the word in (A,u {l})* (possibly infinite) obtained
by putting the labels in 7 after each other (possibly including an endpoint label).
(2) The A-label of , L,(), is the word in (AU {{})* obtained by leaving out all

s in I(7), but with the exception that if /(7)=1“ (an infinite sequence of 7’s),
then I,(7)=38.

Example 3.3. If g= ({ )" then g has paths with labels &,,a,al,r",7%, 7"a,7"al

(for each neN) and with A-labels e,|,a,al,d (¢ is the empty word).

We define three different bisimulations on G,.

(1) 3-bisimulation, €24 is the simplest;

(2) 78-bisimulation, =5 is like €25 but takes into account the special status of t
as a silent step;

(3) rooted 78-bisimulation, <, 4 is like £2,; but also takes into account the special
case when T is an initial step.

For more information on bisimulations, see [23, 24]. (We use 3 as a subscript, to
distinguish the bisimulations introduced here from £, =, and <, defined in [10],
where 8 is absent.)

Definition 34. Let g, heG,, R< NnoDEs(g) X NopES(h).
(1) R is a d-bisimulation between g and h, R: g < h, if:
(i) (rooT(g), ROOT(h))E R;
(ii) the domain of R is NoDES(g), the range is NoDEs(h);
)

(ii1) if (p,q)€ R and is an edge in g with label I€ A, then there

isa q'e NoDES(h) and an edge in h with label I such that (p’, g’) € R;
(iv) if (p,q)e R, and p is an endpoint in g with label I€ {8, |}, then g is an

endpoint in h with label [;
(v), (vi) as (iii), (iv) but with the roles of g and h reversed.
(2) g=2; hiff there is an R:g < h.
(3) R is a t3-bisimulation between g and h, R:g < ; h, if:
(i), (ii) as in (1);
(ii1)" if (p, q) € R and is an edge in g with A-label /e AU {e}, then

there is a g'e NODEs(h) and a path in h from q to q' with A-label ! such that
(P q)eR;
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(iv)" if (p,q)€ R, and p is an endpoint in g with (A)-label I {8, |}, then there
is a path in h starting at q with A-label [;

(v)', (vi)" same as (iii)’, (iv)’ but with the roles of g and h reversed.

(4) g<= 5 hiff there is an R:g<, h.

(5) Let g, h,€ G~ (so with acyclic root). R is a rooted 75-bisimulation between
g and h), R:g, = s h,, if R:g, =4 h, and, in addition, if (p, g)€ R, then p=
ROOT(g,) < g =ro0T(h,).

(6) g <. h iff there is an R:p(g) =, p(h).

Example 3.5. In Figs. 3-8 we show some examples of bisimulations.

b g T
rté “«—>
a a a Trts T
§
a

!

T
Fig. 3.
Fig. 4.
—
rté
T
a b

\
N

Fig. 5.

Lemma 3.6. (1) £2;, £ and <, are equivalence relations on G,.
(2) ForallgeG,, g=2;p(g), § .5 p(g) and g 5 p(g)-

Proof. Easy. [
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a T
7“ért §

Fig. 6. Fig. 7.

a ¢5 a a
b c b c

Fig. 8.

3.2. Operations and constants

G,/ €5 will be the domain of our model. Next we need to define the operations
of ACP, on G,/ ;. Actually, we will define them on G, and leave it to the reader
to check that £ _; is a congruence relation for all these operations.

Definition 3.7 (“+”). If g, heG,, obtain g+ h by identifying the roots of p(g) and
p(h). If one root is an endpoint, it must be —o (for 0¢G,) and we delete this

label. If both g and h are —<t we put g+h=—05,

Example 3.8. See Fig. 9.

Fig. 9.
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Definition 3.9 (““-*). If g, h € G,, obtain g - h by identifying all }-endpoints of g with
rooT(h) and removing the |-labels in g.

Example 3.10. Sce Fig. 10.

Fig. 10.

Definition 3.11 (“|”). If g, h€G,, obtain g || h by taking the cartesian product graph
of g and h (with as root the pair of roots from g and h), and adding, for each edge

in g with label a, and for each edge 0 0 in h with label b, if

a|lb=c#8, anew edge @ @ with label ¢ (a ‘diagonal’ edge).

In g| h, define the endpoint labeling as follows:

(1) ifin node (p, q) only one of the two components is an endpoint, drop its label;

(2) if in node (p, q) both components are endpoints, give this endpoint label |
if both p and g have label |, and label § otherwise.

Example 3.12. See Fig. 11 (assume ala=a|b=b|b=b|a=3).

Fig. 11.

Definition 3.13 (“|"). If g, heG,, g| h is the maximal subgraph of p(g)|h in
which each initial step is one from p(g).

Example 3.14. See Fig. 12 which should be constrasted with Fig. 13 (we again
assumed ala=a|lb=b|b=b|a=3).
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I b
a b a
b
§
b |L
a a b

$

Definition 3.15 (“|”). If g, heG,, g|h is the sum of all the maximal subgraphs of

g || h that start with a communication (diagonal) step and can be reached from the
root by a path with A-label «.

Fig. 13.

Example 3.16. If bla=a|b=c, ala=b|b=3, then the result is shown in Fig. 14.
Notice that it is possible that the communication of two finitely branching graphs
results in an infinitely branching graph that does not bisimulate with a finitely

Fig. 14.
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branching graph (see Example 3.17). This is the reason that Gy, is not a model for
ACP, (cf. remark (2) in Section 1.3).

Example 3.17. If bla=a|b=c, and a|a=b|b=3, then we have Fig. 15.

b A\

Fig. 15.

Without proof we mention the fact that if g, he G, for some « >N, then also
g|lheG,

Definition 3.18 (“9,°"). Let H < A be given. If g €G,, obtain 3, (g) by the following
steps:

(1) remove all edges with labels from H,

(2) remove all parts of the graph that cannot be reached from the root;

(3) label all unlabeled endpoints by 3.

Example 3.19. If a € H, then we obtain Fig. 16.

Fig. 16.
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Definition 3.20 (‘“t,"). Let I ¢ A—{8} be given. If ge G,, obtain 7,(g) by changing
all labels from I to 7.

Definition 3.21 (“7,’). Let n=1 be given. If geG,, obtain m,(g) as follows:

(1) NopEes(m,(g))={se NoDEs(g):s can be reached from rRoOT(g) by a path 7
with the length of [,(7) less than or equal to n};

(2) epces(,(g)) ={e<cEDGES(g): e occurs ina path = from RooOT(g) with length
(Ia(m))<n},

(3) rRooT(7,(g)) =ROOT(g);

(4) all unlabeled endpoints in m,(g) get a label |;

(5) if a 8-labeled endpoint cannot be reached by a path 7 with length (l4(7)) <n,
change the 3-label to a |-label,

(6) all other labels remain unchanged.

Example 3.22. See Fig. 17.

o
o

(e}

Fig. 17.

Definition 3.23. Finally we define an interpretation of the constants of ACP, into G,.
(1) If ae A—{3}, its interpretation [a]= |°
@) [8]=&"

@) b= |-

3.3. Main theorem

Theorem 3.24. Let k be a given infinite cardinal number greater than ¥X,.

(GK,(+,-,H,ll_,l,amnﬂn)’<{i‘““e""{8}}’éa’ ))

is a model of ACP,+SC+PR+KFAR, +KFAR,+- - .
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Proof. We have the restriction on « because of the remarks in Example 3.16. The
proof of the theorem is not very hard but extremely tedious, which is why we will
limit ourselves to some examples and only consider the rules KFAR, in detail.

In [7,11] the set of finite, acyclic process graphs modulo bisimulation is proven
to be a model of ACP,. [

3.3.1. Examples

In the following examples we shall denote bisimulations by linking related nodes
by dotted lines.

Example 3.25 (A3: a+a=a). See Fig. 18.

e, —————

Fig. 19.

Example 3.27 (T1: at= a). See Fig. 20.
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Example 3.28 (T2: ra+a=1a). See Fig. 21.

Example 3.30 (KFAR). (Also see [10, 7.12], where a version of KFAR without & is
proved.)

Let k=1 be given and suppose iy,..., k€1, Xo,..., Xk—1, Yo,---»YVk—1 aI€
processes, and x, = i,X,+,+y, for all neZ,. Let hy,..., h,_, be the graphs corre-
sponding to the y,, ..., yx—;. We can assume that the h, are root-unwound.

Claim. There are unique g, ..., g_1€G, (up to £,) such that g, €5 i,8,41 1 hn
hold for each ne Z,.

Proof. This is essentially [10, Theorem 7.3]. It is easy to see that graphs g, (n <k)
displayed in Fig. 23, satisfy the condition.

Now, suppose graphs g, . . . , g_, also satisfy the condition, S0 g/, £2..5 in€h+1 1 hn
for each neZ,. We can assume that the g), are completely unwound to trees. For
each neZ,, choose a rooted t3-bisimulation

Rn : gil Qn—a ing:1+l+hn-
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Fig. 23.

Fix n <k. Now we will define a rooted t8-bisimulation
R : g’n 52”8 gna

thus finishing the proof of the claim. We put (RooT(g}, rooT(h;))€ R foreachleZ,.
Let s be any other node in g, and let 7 be the path from rooT(g,) to s. Take a
node s’ in graph i,g,., + h, such that (s, s') € R,. If s'e NopEs(h, ), define (s, s') € R.
If s"=Ro0OT(g+), define (s, ROOT(h;4,)) € R. Otherwise, s'€ NODES(gh+,), and let
7' be the path from rRooT(g,+,) to s".

Since I4(7) must be equal to i, followed by I (7'), we must have that
length(l4(7")) =length(l4(7)) — 1. Now, repeat this procedure; so take node s” in
graph i,.,gh+,+ h,., such that (s', s") € R,.,,. If s"e NoDES(h,.,), put (s, s") e R. If
5" =ROOT(gh+2), put (s, ROOT(hy,,)) € R. Otherwise, s”"€ NODES(gh+2), but at a still
shorter distance from the root.

Thus, every sequence s, s’, s”,... must eventually ‘surface’, and to each se¢
NoDEs(g,) we will find an s* e NoDEs(g,) such that (s, s*) e R.

It is not hard to show that R is indeed a rooted 7d-bisimulation, so that the claim
is proved. O

(1) Let us now first consider the case k=1, so we have
g ﬁn?x lg + h

for some i€ I, g, heG,.
Case 1: h =3 (actually, we mean h = —o8). Then g 25 ig. We see by the claim that

g had rrd 8 i.
Then
T,(g) ‘sz) 8 T =2 .

4
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which is the desired result because

x=ix=ix+3 KFAR,.

T{i}(X) =1

Case 2: h is not 8. Then we obtain that g is rooted d-bisimulated by the graph

in Fig. 24(a), so ;(g) is rooted 78-bisimulated by the graphs in Fig. 24(b): again
the right result.

(a)

(b)

Fig. 24.

(2) If k> 1, the proof works similarly. (We remark that in [26] it has been shown
that the rules KFAR,, for k> 1, logically follow from KFAR,.) For instance, if
k=3, we have

812518t hy, 8225 83T hy, 8325 381+ hy

(iy, b, i3, €I), so g, is rooted 7d-bisimulated by the the graph in Fig. 25, whence
71(81) is rooted 78-bisimulated by the graphs in Fig. 26.

Fig. 26.
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3.4. Handshaking

If we adopt the Handshaking Axiom (HA), namely

(HA) x|y|z=3

for all processes x, y, z, which says that all communications are binary, then the
following Expansion Theorem (ET) holds in the model G,/ .. (k > ¥;). This is
because G,/ £, satisfies the Axioms of Standard Concurrency of Section 1.3. A
proof of this fact is given in [7]. The formulation of the Expansion Theorem is due
to Bergstra and Tucker [12].

Theorem 3.31 (Expansion Theorem). Let x,, ..., x, be given processes, and let x' be
the merge of all x,, ..., x, except x;; let x/ be the merge of all x,, ..., x, except x;
and x;; then the Expansion Theorem is

(ET) x[[x]...Ix.= ¥ x[x+ ¥ (x|x)|x"

l<i=n Isi<j<n

in words: if you merge a number of processs, you can start with an action from one of
them or with a communication between two of them.

3.5. Alphabets

We can define, for each g € G,, the alphabet of g, a(g), to be the set of all labels
occurring in g except 7, 8, |. Note that here we will need the requirement in Remark
2.3 that each node can be reached from the root. Then it is easy to see thatif g« 5 h
(even if g =4 h), then a(g) = a(h). With this definition, it is not hard to show that
G,/ 2.5 (k> R,) satisfies the Conditional Axioms (CA), first formulated in [3], as
shown in Table 4.

Table 4.

a(x)|(a(y)nH)c H a(xWa(y)nI)=¢

i
|
CAl : CA2
3y (xlly) =8p(x]|84(») | 7(x]ly) =1, (x|, (»))
|
H= I=
a(x)n ] CA3 : a(x)n [4] CA4
dap(x)=x : T(x)=x
H=H UH | I=1Lul
Pk o S cas | ——do CA6
04 (x) =08, °dp,(x) i T(x) =T 07(x)
e (I —-
Hnl=9

CA7
T o8y (Xx) =08y °7,(x)
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4, The approximation induction principle

The unrestricted Approximation Induction Principle (AIP) expresses the idea
that if two processes are equal to any depth, then they are equal; or, for processes

xv y’

forall n m,(x)=m,(p)
x=y '

(AIP)

We will prove in Theorem 4.3 that a restricted version of AIP, called AIP”, holds
in G,/ £,.5 (k>¥,). In Section 4.1 we will see that the unrestricted version does
not hold. First some definitions.

Definition 4.1. (i) Let g €G,. Define the nth level of g,[g],, by

[g].={seNoDEs(g):s can be reached from rRoOT(g) by
a path 7 with length (l4(7))=n}.

We say s € NODES(g) is of depth n if se[g],. Note that the [g], for different n need
not be disjoint. The [g], are disjoint if g is a process tree.

(ii) Let g, heG,. A relation R between nodes of g and nodes of h is called
history-preserving if R only relates nodes with a common history; i.e., if, for
se NoDEs(g) and t€ NoDEes(h), R(s, t) holds, then there is a path 7 from rRoOT(g)
to s and a path 7' from rooT(h) to ¢ such that [4(7)= L(=').

Note that a history-preserving relation relates only nodes of the same depth.

Lemmad.2. Letg, heG, and g €, h. Then there is a history-preserving rv- bisimula-
tion between g and h.

Proof. Left to the reader (note that we build up such a bisimulation step by step
from the root, using the definition of bisimulation). 0O

Theorem 4.3. Let g, he G, and suppose that for each n
(1) wn(g) Qn’S Wn(h)
(ii) either [g], or [h], is finite.

Then g < 4 h.

Proof. Without loss of generality, we can suppose that g and h are completely
unwound to process trees (the proof also works for general process graphs, but

becomes harder to comprehend). All bisimulations appearing in this proof will be
history-preserving.
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Given is that m,(g) 2,5 m,(h) for each n; we say that g and h rr3-bisimulate
until depth n.

Suppose that R is a (history-preserving) rr3-bisimulation between g and h until
depth n+ m that relates s € NoDES(g) to 1€ NoDEsS(h) at depth n. Then R induces
a 7d-bisimulation between (g), and (h), until depth m. Thus, the given bisimulations
between g and h until finite depth induce many bisimulations between subtrees of
g and h, until finite depth. This leads to the following definitions. Fix neN, and
let se[g],, te[h],. Define

§~mnmt & thereis an R: 7,4 ,,(8) S5 Tram(h)

such that
Rn((g)sx(h)): mm((8)s) 25 mm((h),)

(in words: there is an R which is a rooted 78-bisimulation until depth n+m and,
restricted to the subtrees of s and ¢, is a 3-bisimulation until depth m; if m =0,
the second part boils down to R(s, t)), and

s~t & forall meN: s~ t.

We will show that ~ is a rooted 73-bisimulation between g and h. Note that ~
is history-preserving, so only relates nodes of the same depth. Let us first see how
~ works at a certain level n. Suppose [g], is finite. Let us first consider a te[h],.
Let S,, be the set of nodes in [g], that are ~,, related to ¢; i.e.,, s€ S, iff s ~, .
We see $,25,2:::285,, 2 and all S,, are nonempty. Therefore, since [g], is
finite, we get [ \m=1 Sm # 0.

Take s in this intersection; then we have s~ . Thus, for each 1€ [h],, there is an
se[g], with s~t Next, consider an s€[g],. Let H, be the set of nodes in [h],
that are ~-related to s. Then [h], is the union of these sets H,, and this is a finite
union. Note also that some H, might be empty. Now we start the verification, that
~ is a bisimulation. First note that, by definition of ~ and assumption (i), we have
(cf. Definition 3.4)

(i) root(g)~roOT(h), and
(vii) if s~ t, then s =ro0T(g)< t =r0OT(h). Also it is not hard to see that
(ii) dom(~)=NoDEs(g) and ran(~) = NopEes(h). It remains to verify (iii)’, (iv)’,
(v)', (vi') of Definition 3.4(3).

For (iii)’, suppose s~t and take n such that se[g],, te[h],. Let @'—-@
be an edge in g with label L

Case 1: I#1,50 [I=ae A Then s*e[g],4:.

Case 1.1: [h],,, is finite. By the reasoning above, there is a node * in [h],+,
such that s*~ r*. Since all bisimulations are history-preserving, there must be a
path from t to t* with A-label a.

Case 1.2: otherwise. By assumption (ii), [g],, is finite. If H #* @, we are done.
Otherwise, we can find a sequence (f,, t,, t,,...) in [g], such that s* ~, ¢, (since
§ ~m+1 t). Since there are only finitely many H,, there is an s’ such that ¢, € H, for
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infinitely many m. Pick t*e H,. We will prove s*~ t*, and then we are done. So
let meN. Now s*~_,t, §~t* and s'~1t, so we can take
Ry, Ry, Ry: Tnimi1(8) Srs Tuam+1(h) such that

RN ((g)s% (h),,): mn((8)s*) S5 mm((h),,),

Ry ()X (h) ) ((8) ) a5 T () v),

Ry ((8)sx(h)y,): mm((8)s) S5 mm((h):,,)-
A picture might clarify the.matter (Fig. 27).

lq) T (h]

ntl 1l

Fig. 27.

Now, define R < NoDEs(g) X NoDES(h) by (p, g) € R & there are p’e NODES(g)
and ¢’ € NopEes(h) suchthat (p, ¢')€ R, (p’, q) € R,,and (p', ") € R5. It follows that

R: ﬂ-n+m+l(g) gr-rS 7'rrl+m+l(h)
and

R ((8)se X (B)e) : Tm((8)s+) 25 m((R) 1),

so s* ~,, t* Since m was chosen arbitrarily, we have shown s* ~ t*,

Case 2: l=r7. We reason as in Case 1, but work in [g],, and [h], since a 1-step
does not increase depth, so s*€[g],, t*e€[h],. Also, it is useful to intersect the
level [g], with (g), and the level [h], with (h),. Thus, we have verified (iii)’ of
Definition 3.4(3).

For a verification of (iv)’, suppose s ~ ¢, n is such that se[g],, t€[h],, and s is
an endpoint in g with label L Since s ~, ¢, there is an R: 7,,(g) €..5 Tn+1(h) with
(s, ) € R. s is also an endpoint in 7,.,(g) with label [, so since R is a 8-bisimulation,
there must be a path in m,.,(h) starting at ¢ with A-label L Since t€[h],, this path
is also in h and has the same A-label there.

Proofs for (v), (vi)' of Definition 3.4(3) are like the proofs for (iii)’, (iv)’, but
with the roles of g and h reversed.

Thus, we have shown that ~ is a rooted 78-bisimulation between g and h, which
finishes the proof. [

Definition 4.4. Let g G,. We say that g is bounded if g has no path with label 7*.
(A somewhat more restricted definition of boundedness is given in [6].)

Lemma 4.5. If g€ Gy, (i.e, g is finitely branching) and g is bounded, then, for each
n, [g], is finite.
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Proof. By induction. For n =0, [ g], consists only of those nodes that can be reached
from RooT(g) by a path with all labels 7. The graph g’ consisting of [g], and these
T-paths cannot contain a cycle, for that would immediately give a path with label
7, contradicting the boundedness of g. Thus g’ is acyclic and, by K6nig’s Lemma,
it must be finite, for an infinite branch has label 7. Then also [g]o= NODEs(g’) is
finite.

For the induction step, suppose [g], is finite. Put

B= {se [g].+1:there is a te[g], and an edge @-"*@,aeA}.

Since each te[g], can have only finitely many immediate successors in B, B must
be finite. If se[g],+;— B, s can be reached from a member of B by a series of
T-steps, and the same argument as above shows that [g],., must be finite, which
finishes the proof. O

Corollary 4.6. Let g, heG,. If one of g, h is finitely branching and bounded, then g,
h satisfy (AIP) (ie., if, for all n, m,(g) €,.s m,(h), then g <_ h).

Proof. Combine Theorem 4.3 and Lemma 4.5. [

4.1. Counterexamples

Suppose a is an atomic action different from 3.

Example 4.7. Define g=) ., a", h=g+a®“. See Fig. 28.

n=1

Fig. 28.

It is not hard to see that, for each n, 7,(g) €5 m,(h), but not g< s hso g, h
do not satisfy (AIP). g and h are both bounded, but not finitely branching.

Example 4.8. g’ and h' are shown in Fig. 29. Again we have m,(g") s m.(h') for
each n (using the second t-law T2), but not g’ £,.5 b/, so g’, k' do not satisfy (AIP).
g’ and h' are both finitely branching, but not bounded.
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Fig. 29.

Note: although g and g’ (and h and k') are certainly related, they do not
78-bisimulate. However, if we change g’ so that each branch occurs infinitely many
times, we do have a t8-bisimulation (this is a sort of infinite version of KFAR).

Remark 4.9. At this point, we cannot formulate the restricted version of (AIP)
proved in Theorem 4.3 or Corollary 4.6 algebraically. We will be able to do this in
Section 5, after we have discussed RDP and RSP.

5. The Recursive Definition Principle and the Recursive Specification Principle

In this section we will look at recursive specifications, which are sets of equations,
and processes given by recursive specifications. The Recursive Definition Principle
(RDP) states that certain specifications have a solution, while the Recursive
Specification Principle (RSP) says that certain specifications have at most one
solution. Specifications that satisfy both RDP and RSP have a unique solution.

Definition 5.1. A (recursive) specification E ={E;:je J} is a set of equations in the
language of ACP, with variables {X;:je J} (J is some set) such that equation E;
has the form X; =T}, where T; is a finite ACP,-term (with finitely many variables)
and J contains a designated element j,. If J is (partially) ordered and has one
minimal element, then j, is this minimal element.
Example 5.2. Let E be

Xo=X, | X,+ X;a, Xy =134 (X0Xo),

X2=TX2, X3=T1(aX2+X3bX1).
Here J={0, 1,2, 3}, jo=0, E, is equation X,=1X, and T, is term 1X,.

Definition 5.3. Let J be a set, E a recursive specification indexed by J, and let
{x;:j € J} be processes. Put x=x;, X={x;:jeJ,j#jo}.
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(1) x is a solution of E with parameters X, notation E(x, X), if substituting the x;
for variables X; in E gives only true statements about processes {x;:je J}.

(2) x is a solution of E, notation E(x, _), if there are processes X = {x;:j e J, j # jo}
such that E(x, X).

(3) x is (recursively) definable if there is a specification E such that x is the unique
solution of E.

Definition 5.4. The Recursive Definition Principle (RDP) for a recursive specification
E is

(RDP) 3x: E(x,_)

i.e., there exists a solution for E. While it is probably true that RDP holds in general
in the model G,/ £,.5, we will prove it only for a restricted class of specifications.

Definition 5.5. The Recursive Specification Principle (RSP) for a recursive
specification E is

E(x,.) E(y, -)
x=y

(RSP)

It is obvious that RSP does not hold for every specification E (every process is a
solution of the trivial specification X,= Xj).

In the sequel, we will formulate a condition of guardedness such that RSP holds
for all guarded specifications in G,/ .5 (k > N,). However, we run into big prob-
lems when we want to formulate guardedness for specifications containing abstrac-
tion operators 7;. As a hint to the problems involved, consider the specification

{Xo——‘ aT(b)(Xl),
X‘ = b’T{a}(Xo).

This specification certainly looks guarded, but has infinitely many solutions in
G,/ £..;, so does not satisfy RSP. (If p is any process not containing an a or b,
then a- p is a solution for X,, and b- p is a solution for X,.) Because of these
problems, we will formulate guardedness and the following theorems only for
specifications that contain no abstraction.

Definition 5.6. Let T be an open ACP,-term without an abstraction operator 7;. An
occurrence of a variable X in T is guarded if T has a subterm of the form aM, with
ac A (so a#7), and this X occurs in M. Otherwise, the occurrence is unguarded.
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Examples 5.7. Let T be the term
aX0+TX1+a U__ X2+ X3 ” aX4.

In T, X, and X, occur guarded and X,, X,, X; unguarded.

Definition 5.8. Let E ={E,:j e J} be a specification without an abstraction operator
7, and let i, je J. We define X; =" X;& X; occurs unguarded in T; and we call E
guarded if relation —" is well-founded (i.e., there is no infinite sequence

le ——>u ‘X}zﬁu Xj;; __)“ T .)'
Next we start the proof of RDP and RSP in G,/ £, (k > N).

Definition 5.9. Let E ={E;:je J} be a specification, and let j€ J. An expansion of
X; is an open ACP.-term obtained by a series of substitutions of T; for occurrences
of X; in E;. To be more precise, we use:

(1) substitution: if we obtain ¢ by substituting T; for an occurrence of X; in s,

then ¢ is an expansion of s;

(2) reflexivity: t is an expansion of t,

(3) transitivity: if t is an expansion of s and u is an expansion of ¢, then u is an
expansion of s. For more details, see [3, Section 2.7].

Lemma 5.10. Let E be a guarded recursive specification in which no abstraction operator
7y occurs and let je J (the index set of E). Then X; has an expansion in which all
occurrences of variables are guarded.

Proof. Essentially, this is [3, Lemma 2.14]. We build up such an expansion in the
following way. If, in T}, all occurrences of variables are guarded, we are done.
Otherwise, substitute T; for all unguarded X; in T; and repeat this process. This
must stop after finitely many steps, for otherwise we obtain by Kénig’s Lemma an
infinite sequence X;—"X;—"---  which contradicts the well-foundedness of
-4 0O

Theorem 5.11. Let E be a guarded recursive specification in which no abstraction

operator occurs. Then, in the model G,/ €. (k> ,), E has a solution which is finitely
branching and bounded.

Proof. We will construct a solution g in stages g, for neN. For n=1, let T' be an
expansion of X; in which all variables are guarded (T' exists by Lemma 5.10).
Then it is easy to see that 7,(T"') does not contain any variables, so is a finite closed
ACP -term. Let g, be the canonical graph of ,(T"). By canonical, we mean that
we do not use any ACP,-equations in constructing g,, but only the operations
defined in Section 3.2 (we can replace all variables occurring in T' by & since they
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do not matter anyway). Note that g, is finite. Now, suppose g, is constructed and
is the canonical graph of 7,(T"), with T" an expansion of X, such that =, (T")
does not contain any variables. Now, if X, is a variable occurring in T", expand X;
to a term S; in which all variables occur guarded (S; exists by Lemma 5.10). T"*!
is the result of substituting the S; for each X; occurring in T". Then T"*"'is an
expansion of X, and 7+ (T"") does not contain any variables, so is a finite closed
ACP.-term. g,., is the canonical graph of m,,,(T"""). Note that g,., is finite, and
o (gn+r1) = &2 (=, n0t just £2_,1). Now we define g = UZ:, 8, (leaving out all |-labels
in non-endpoints). Note that, for each n, m,(g) = g, and that g is finitely branching
and bounded. It remains to be shown that g is a solution of E.

The same way we constructed g =g; , we can construct graphs g; for each je J
We will show that the graphs {g;:j e J} satisfy all equations of E. Let iy€ J, and let
equation E; be

X’})= TR)(Xil gas ey Xi,,,)a
where X, ,..., X, are the variables occurring in T,. We have to show
8, e T(&is - - -5 &)

We do this by AIP (Corollary 4.6 applies since g, is finitely branching and bounded).
So fix neN. Let, for 0< k< m, T}, be an expansion of X, such that m,(T}) contains
no variables and m,(g; ) is its canonical graph. Then

Trn(Tt],(gi, yeres gi,,,))
=m, (T (m.(g), .., m(gi,))) (use Definition 3.21)
=7,(Ty(m.(T7), ..., m(T7,))) (by assumption)

=m.(T,(T},..., T})) (again by Definition 3.21)
=m,(T}) (by construction of T})
=7,(g,) (by assumption).

This finishes the proof. [

Theorem 5.12. Let E be a guarded recursive specification in which no abstraction
operator occurs. Then, in the model G,/ €,.;, E has a unique solution (k> ¥,).

Proof. By Theorem 5.11, E has a solution g which is finitely branching and bounded.
Let h be any other solution of E. We will show g <2, s h by AIP. So let neN, and
let T" be an expansion of X, so that m,(g)=,(T"). On the other hand, if h = h;,
solves E with parameters {h;:j€J,j # jo} and T, has variables X, ..., X , then

he s T(h,..., h) (for h is a solution)

2.5 T (T, (h), ..., T, (h))
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(for the same reason, for some sequences h from {hi:jeJ})

< . T"(h) (for some sequence h),

whence m,(h) €., m,(T"(h)) = m,(T" (X)) = m,(T"). O

Note that Theorem 5.12 does not suffice to conclude that the equation x = ix+y,
occurrring in Example 3.30, has a unique solution x for each given process y. In
this paper, we do not consider equations with parameters at all. We refer to [21]
for a discussion on solving equations with parameters.

Now we can give the following algebraical formulation of AIP, which holds in
the model G,./ €25 (x> Ny).

Theorem 5.13. G,/ €. (k > N,) satisfies the following principle, which we will call
AIP™:

Sor all n m,(x)=m,(y)

x is specifiable by a guarded E without T,
xX=y

(AIP7)

Proof. If x is the solution of a guarded recursive specification in which no abstraction
operator occurs, in the model it is the equivalence class of a finitely branching and
bounded graph, by Theorems 5.11 and 5.12, which satisfies AIP by Corollary 4.6. [

It is a drawback of the previous theorems that we cannot use abstractions in our
specifications. We can partially remedy this deficiency however by introducing a
hiding operator t;. This we do in Definition 5.14. We also remark that, in [15],
another formulation of AIP™ appears, which is a little less restrictive and which we
can also use in the presence of an abstraction operator.

Definition 5.14. We define an auxiliary theory ACP! as follows:
(1) ACP; extends ACP,;
(2) ACP; has a new atom te A with t|a =29 for all ac A;
(3) ACP: has anew operatort, (where I < A, —{8}) defined by the four equations

in Table 5. (Here ac A,,s0 a=7 or a=t is possible, and x, y are processes over
ACP’; compare [3, Section 2.10].

Definition 5.15. We extend G, with a new element
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Table 5.

t;(a)=a ifagl
t;(a)=t ifael
t(x+y)=t(x)+t,(y)
tr(xy) =t;(x) - t;(»)

(t a new label) and we define t; on G, by stipulating that t,(g) is the graph g with
all labels from I changed to t.

Remark 5.16. Theorem 5.12 still holds for specifications E in which a hiding operator
t; occurs. This is not hard to see.

Corollary 5.17. G,/ =, (k > N,) satisfies the following principles, which we will call
RDP and RSP:

E guarded, no 1,

(RDP) dx: E(x, _)

E(x,.) E(y,-)
E guarded, no t,.

xX=y

(RSP)

6. Computable graphs

In the previous sections, we have defined a model for ACP,, in which a number
of desirable principles hold (KFAR, RSP, RDP, AIP™). In the rest of the paper we
show that this model is not too big: every computable graph is the solution of a
finite recursive specification. Thus, the graph models are the ‘natural’ models of
ACP,.

In this paragraph, we look at computable graphs. We will prove that every
computable finitely branching graph is definable by a finite guarded specification
in the language of ACP,. We will prove this result via a number of intermediate
results. First we define what we mean by a computable graph. In a computable
graph, one must know at every point how many possibilities there are to proceed,
and the label of each of those possibilities. Therefore, we need two computable
functions od (for out-degree) and 1b (for label). Since these must be number-theoretic
functions, we need some coding of graphs. We do this by numbering the edges
starting from each node. It also follows that we have to restrict ourselves to finitely
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branching graphs (although countably branching graphs could possibly also be
considered).

In order to show that every computable graph is the solution of a finite recursive
specification, we first show in Theorem 6.7 that every partial computable function
on natural numbers can be represented as the solution of a finite recursive
specification. In the proof of Theorem 6.7, we use the principles RDP, RSP, AIP™
and KFAR,. In Theorem 6.8 and Corollary 6.9, we then prove that the theorem
holds for every binary branching graph. In Lemma 6.10, we show that it is sufficient
to look at binary branching graphs. The proof of Lemma 6.10 takes place in the
graph model, and this is the only place in this section where the proof is not
algebraical. To turn the proof of Lemma 6.10 into an algebraical proof, it will be
necessary to formulate an extended version of KFAR, more extended even than the
rule CFAR mentioned in Section 1.8. When such a proof is found, however, we
will have shown that every process that is the unique solution of a computable
recursive specification also is the unique solution of a finite recursive specification
(after abstraction), independent of a model. In the present text, we only obtain this
result (in Section 8) relative to the graph model.

6.1. Definitions

Definition 6.1. Let g € Gy, (so g is finitely branching). A coding of g consists of the
following:

(1) If se NopEs(g) and the out-degree of s in n, then the outgoing edges are
named 0,1,...,n—1.

(2) This leads to the following naming of nodes: a sequence o € w* names the
node reached by following the path from rRooT(g) with edge-names in o.

Example 6.2. Let g be the graph of Fig. 30 with indicated coding. rRooT(g) has
name ¢ and the endpoint of g has names 000, 10, 110, 20 and 210.

Fig. 30.

Remark 6.3. geGy, is a tree & each node has exactly one name.

Definition 6.4. Let g Gy, be coded. We define two partial functions

od:w*>w,  Ib:rw*>AU{S, |},
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as follows:
(1) od(o) =the out-degree of the node named by o if o names a node;
(2) od(o) is undefined otherwise;
(3) Ib(o*n)=the label of edge 'n starting at node o if o names a node and
n<od(o) (here o*n is sequence o followed by number n);
(4) 1b(0*0) =the label of endnode o if o names a node and od(o)=0;
(5) Ib(o) is undefined otherwise.

Definition 6.5. g€ Gy, is computable if there is a coding of g such that functions od
and Ib are computable (since the set A is assumed to be finite, coding of Au {3, |}
into w is not important).

6.2. Results

Now we start the proof of the main theorem of this section. The first step
towards proving it will be to show that every computable function can be represented
by a finite guarded specification. First we say what we mean by a representation.

Definition 6.6. Let D be a finite set of data. We suppose we have a number of
communication channels 0,1, ..., k (k= 1), of which channel 0 is the input channel
and channel 1 the output channel. Any other channel is an internal channel. Further-
more, we suppose our set of atoms A contains elements

(1) s;(d)=send d along channeli (de D, i<k);

(2) ri(d)=receive d along channel i (de D, i< k),

(3) c;(d) = communicate d along channel i (d € D, i< k).

On these elements, we define the communication function by

si(d)|r(d)=ci(d)

and all other communications give 3.

Now suppose f: D*— D* is a partial function. We say process f”representsf iff
for any o, pe D* f(o) = p<inputting sequence o along channel 0 will be followed
by outputting sequence p along channel 1; and f(o) is undefined & inputting
sequence o along channel 0 will be followed by deadlock. To be more precise,
suppose a sequence o =d, ...d, is given, and we have a marker ‘eos’ indicating
the end of a sequence.

We define the sender S, =sq(d;) * so(d;) - ... so(d,) - so(eos) and the receiver R
by the following finite guarded specification (which has a unique solutionin G,/ €2,
by Theorem 5.12):

R= Y ryi(d)- -R+r,(eos)

de D
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Then, we will hide unsuccessful communications:
H’={s;(d), r(d)|de Du{eos}, i=0, 1},
and now we can give the formal definition: process f represents function f iff, for
any o, pe D* say o=d,...d,, p=¢,...e, (With n, m=0):
(1D flo)=p & 8u(S, | FIR) =coldy) - cold) - ... - co(d,)
“coe0s) - ci(ey) “... - ci(en) - ci(e0s),

(2) f(o) is undefined © 8,4(S, | f|R)
=co(dy) * coldy) ... - co(d,) - co(e0s) - B.

Theorem 6.7. Letf: w* - w* be a partial computable function. Then f can be represented
by a process, defined using a finite guarded recursive specification.

Proof. Let f be given. Itis well-known that f can be represented by a Turing machine
over a finite alphabet D with finitely many states 0, ...,k (k=1) of which 0 is the

starting state and k the ending state. In turn, we will simulate this Turing machine
by a finite specification

x=t;23,(C|S,]Ss), namelyf=ry(x).

Here C is a finite control and S, and S; are stacks. We have the following picture
(Fig. 31). The specifications of S, and S, are

S, = > r,-(d)TfS,-+r,-(stop) (i=2,3),

de Du{eos}

T¢=s,(d)+ Y r1(e)T:T? (for each d € DU {eos})

ee Du{eos}

(see, e.g., [11]), (the extra atom ‘stop’ is needed for successful termination). C is
specified using variables C, Cl’ «ovy Ci, Crsr, Crss (think of these C; as the ‘states’
of C, and (o, ..., C, correspond to the states of the Turing machine). The

. 0 1
input > f-C\ —>  output

Fig. 31.
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specification of C consists of three parts:
(1) input,
(2) calculation,
(3) output.

Part 1: input

C =ry(e08)s,(e0s)s3(€08) Crn+ ¥ ro(d)s,(e08)s,(d)Crsy,
de D
Cir1=r10(€05)s3(e08) Cr4at Z 1o(d)sy(d) Ciaq,s
deD

Civ2=ra(€0s)s,(e0s) Cy+ ZD 1,(d)s3(d) Cysa.
de

When C, is reached, input sits in S; in the right order, and ends with an ‘eos’
(end-of-stack).

Part 2: calculation

This specification will have one equation for each Turing-machine instruction in
the Turing-machine representation of f:

(a) for each TM instruction ide R m (i<k, m=<k; d, ee D) (meaning that if, in
state i, the head reads d, it is changed to e, the head moves right and goes into state
m), we have an equation

Ci=r3(d)sy(e)C,;

(b) for each TM instruction ide L m (i<k, m<k; d, ec D) (the head moves left
instead of right), we have an equation

Ci=r3(d)s;(e) fZD 12()8:(f) Cin-

Figures 32 and 33 might clarify the matter: if the Turing machine is in the position
of Fig. 32, control and stacks are as in Fig. 33.

Part 3: output
When state C, is reached, the output sits in S, in the right order, and S, is empty,
SO we put

C =r13(eos)ry(eos)s;(stop)s,(stop)s,(eos) + ¥ r3(d)s,(d)C,.
de D

This completes the specification of C.
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head
state 1

Fig. 32.

W/
>ﬂ>

d4 d5
d3 d6
82 d2 d7 83
dl d8
eos eo0s
Fig. 33.

Next we hide all unsuccessful communications by encapsulation: we define
H={s;(d), r;{(d):d e Du{eos, stop}, i=2, 3}
and we hide all internal communications by abstraction: we define
I={c;(d):de Du{eos,stop}, i=2,3},

and consider f=7m(x), where x is the unique solution of specification X =
t; 23 (C || S2|| S5). Informally, we will write

f=11004(C|S,]lS5).

Now we want to show that f indeed represents f, so let o€ D* be given (instead
of working with f we work with its Turing machine representation). Let H'=
{si(d),r;(d):de Du{eos}, i=0, 1} as in Definition 6.6 and consider

(S, | FIR).

Let o=d,...d, and let S? denote stack S; with contents p € D* followed by ‘eos’.
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Then
3n(S I FIR) =84(S, L (FIIR) +8,(F L (So RN+ (R (f]S.))
+3n((So [N LR) + 0, (S IR L H+3u((FIR) L Ss)

(by Expansion Theorem 3.31)
=3+3+d+co(dy)dn

(Suy..a, 712 3u((52(€08)s2(dy) i) [| S2 [| S5) [|R) +8+3
= CO(dl)aH'(Sdz...d,, "TI(Cz(COS)Cz(d) * 3 (Cierq ” S‘;l ” S3)) ” R)
=co(d))7- On(Say.a, |71 © 31 (Crrr | 8% [ S5) | R)

=cy(d))co(ds) . .. co(d,)

“01(s0(€08) [| 7 28 (Cisy | S41[| S) | R)
=Co(d1) ... co(dn)co(€0s) * 85y(Ty ©3py (Cira | S| S9) | R)
=co(d)) ... co(d,)co(€0s) « 3t (co(d,)cs(d,)

"84 (Croaa|| S5 S57)) | R)

=co(d)) ... Co(d,)co(e0s) - (1035 (Co “ Sg ” S3) ”R)

So we have reached the calculation part of the specification. Now we have two
cases, according to whether or not f(o) is defined.
Case 1: f(o) is defined, say f(o) = p. We claim that then

Tr°du(GCo ” Sgllsg)":'”l ° 9y (Cy ” Sg ” S%).

This can be seen if we look at Figs. 32 and 33: each position of the Turing machine
is mirrored by a position of the specification: thus position

tem00y(C | ST SE)

(i<k; o', c"e D* d e D) corresponds to the Turing machine in state i with as tape

contents the reverse of o' followed by d followed by ¢” and head pointing at

position d. Thus, all we have to show is that the TM instructions ‘do the correct thing’.
(a) Suppose there is a TM instruction id e R m. Then

om0y (Cl STSS ) =1 7(cs(d) - 3u((52(e)Cr) | ST S5
=1-71-71(c(€) - 3u(Cp ” Sg*ol ” S{;))
=1-71,005(Cn | S| §9).
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(b) Suppose there a TM instruction id e L m. Then
rorodn(Gl ST S =1 7,(03(d)

T ((53(9) fZD I'z(f)S;(f)‘Cm) ” Sé*o.f “ S‘;))
=T- T,<c3(e)
<0y ((IZD I'z(f)53(f)cm) | S{;”' ” S§*U”>>

=71 7(c(f) 3 ((53(NHCH IS NS5
=1-1,(c5(f) 3 (Cp [ ST ST))
=TTp° aH(Cm “ 520’ ” S{“e*”"l

Thus, since the Turing machine terminates on input o, with p on the tape, in state
k, with the head pointing at the first symbol of p, we must have that

11°0u(Col S3I1ST) =771 28 (Ci | S3I| S5).
Then we can finish the calculation (let p=e,...e,,)

aH'([TTz ° aH(Ck || Sg ” S?)] ” R)
=7 3y(7; 29 (Cc || S5] S5) | R)
=7-cy(e;) 31,094 (Cy ” Sg ” S3rm) “R)

=1ci(e) ... ci(en)Bu(rr 204 (Ci || S3]1 %) | R)
=1c,(e;) ... ¢c;(en)
* 3p(7(c3(€08)c5(e08)dy ([s3(stop)s,(stop)s,(eos)] || S. || S3)) | R)
=7¢,(ey) ... ci(€n)3x (T 7;(cs(stop)c,(stop)s, (eos)) || R)
=7¢,(e1) ... ¢i(e)Td1(s,(e0s) | R)
=1c,(e,) ... c(en)ci(eos),

which finishes the proof of Case 1.

Case 2: f(o) is undefined. In this case, the Turing-machine calculation does not
terminate, state k will never be reached, and process

TI °aH(C0|| Sg” §7)
will do an infinite number of internal steps (steps from I ). We will prove the
following claim, which will finish the proof of Case 2.

Claim. 7, 08,(C, | 2| S7) =13.
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To prove this, we put y =3, (C, || S| S7) and consider x =t,(y). Since the Turing
machine does not terminate, it will keep doing instructions

(a) ide Rm,or

(b) ideLm (im<k;d ecD).

A general step of type (a) looks like:

tr 20 (Gl ST ST™) =ty(es(d)ex(e)dn (Co || 85711 S57)
=ttt; 23, (Cn || 8577 85,
and a general step of type (b) looks like:
trodn (Gl S5 837) =ty (cs(d)es(e)er(£)es(N)3u(C || S5 || S5))
=tittt; e 3 (G || ST || S577).
Thus, process t;(y) =t; © 3, (C,|| S5| ) has states of the form
tredn (G S7]ST)

and will do 2 or 4 t-steps to go from one such state to the next. From this, we
conclude that, for each n, m,(t;(y)) =t". Now consider specification X =tX. This
is a finite guarded specification with no abstraction operator, so it has a unique
solution by RDP+ RSP, to which AIP™ applies.

We call this process t“. It is easy to see that m,(t”)=1t" for each n, so applying
AIP™ (Theorem 5.13) we obtain t;(y) =t, so t;(y)=t"t;(y) because t;(y) will
satisfy the specification of t“. From this last equation, it follows, by KFAR,, that
T(¥)=1 ot (y) =7 74(3) =5, which proves the claim, and at the same time ends
the proof of Theorem 6.7. O

Thus, every computable function can be represented using a finite guarded
specification. We want to prove that every computable graph is definable using a
finite guarded specification, but we will first prove this with two extra restrictions:
the graph must be bounded and binary (i.e., an element of G,).

Theorem 6.8. Let ge G; be computable and bounded. Then g=1,(h), with h the
solution of a finite guarded recursive specification.

Proof. Code g such that functions ‘od’ and ‘Ib’, defined in Definition 6.4, are
computable. Let ‘od’ and ‘b be process representations of od, lb (defined in the
proof of Theorem 6.7).

First we will give an infinitary specification of g. We have a state X,, for each
name o of a node which is not a |-endpoint (so our index set is the set of all
o €{0, 1}* with od(o) > 0 or Ib(c*0) =3, with designated element ¢, a name of the
root). We have seven cases:

(1) od(o)=0, so Ib(c*0) =35. Then X, =3.

(2) od(o) =1, and 0d(c*0) >0 or 1b(c*0*0) =8. Then X, = Ib(c™0) Xyxo.
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(3) od(c) =1, and Ib(c*0*0) =|. Then X, =1b(0™*0).
(4) od(c) =2, both (od(c*0)>0 or Ib(c*0*0)=3) and (od(c*1)>0 or Ib
(o*1*0) =38). Then X, =1b(c*0) X, +1b(c*1) X,

(5) od(c) =2, and (0d(g*0)>0 or Ib(c*0*0) =3) but lb(o-*l*O) =|. Then X, =

1b(a*0) X, +o+1b(a*1).

(6) od(o) =2, and 1b(c*0*0) = but (od(c*1)> 0 or Ib(c*1*0) =3). Then X, =

1b(a*0) +1b(*1) X v .

(7) od(o) =2, and Ib(c*0*0) =1b(a*1*0) =|. Then X, =lb(a*0) +1b(0o*1).

Itis not hard to see that g is need the solution of this specification, with parameters
which we will call x, (we have guardedness since g is bounded). Now we want to
give a finite specification for g. We will describe three parts:

(1) the transition from X, to X «; (i=0, 1), execution of steps,

(2) the history, saved in a stack

(3) the calculation, containing od and Tb.

We have the configuration shown in Fig. 34. We have channels 2, 3, 4, 5, 6, 7 (all
internal) and we extend the alphabet A, by

(1) {s2(d),r2(d), cx(d):d e AZ0 AU{r, |} U {0, 1}},

(2) {s3(d), r3(d), cs(d): d € {start, stop, 0, 1, 2}},

(3) {s4(d), 14(d), c4(d): d e {start, stop}u AU {r, |}},

(4) {ss(d),rs(d), es(d): d € {stop, 0, 1, eos}},

(5) {ss(d), 15(d), cs(d):d €{0, 1, eos}},

(6) {s,(d), (d

r4(d), c;(d):d €{0, 1, eos}}.

Fig. 34.

Part 1: description of P

P has states P, P, for ac A, and P, for a,be A,—{8}, with the following
specification:

P=" 3 n(ab)Pumyt ¥ n(a)P+1,(]);
acA,

a,beA,—{8}
P py=asy(0) P+ bsy(1) P,
P,=as,(0)P, (if a%3)
Ps=3.
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Part 2: description of S
S is a stack that keeps track of the history up to the point reached, and has states
S, Ty, T, with the following specification (k=35,6,7):

S =(sk(e0s) +1,(0) To+1,(1) T,)S +rs5(stop),
Ti=s,(i)+ ¥ n(j) T +rs(stop) (i=0,1).

Jj=0,1

Part 3: description of 6:1, lT), R

We assume od and b are specifications as given in the proof of Theorem 6.7 that
work as follows:

e od has input channel 6 and output channel 3;

e ib has input channel 7 and output channel 4.

Upon receiving a signal ‘start’ from R, they will read the contents o of stack S,
return those data to the stack, calculate od( o) respectively 1b(o) and send the result
to R. Thus, after abstraction from channels 5 and 6, we have (let S contain o):

od= r;(start)s3(od(a))53 +r5(stop),

b= r4(stan)s4(lb(a))fl; +r4(stop).

R is the finite control, and is given by the following equation:

R =s;(start) [r3(0)55(0)54(start) ) r4(l)Sz(1)53(st0p)s4(stop)ss(stop)]
1=38,}

+ [r3(1)55(0)54(5tart) Y ra(Dsa(Dry(0)

le A, —{8}

+13(2)s5(0)sa(start) Y ra(D)rs(0)ss(1)s4(start)
1

€A, —{3}

Y r(Irs(Ds:(B 1)) X l"z(i)ss(i)] R.

l'e A,—{8} i=0,1

Next we do encapsulation:

H={ri(d),s;(d):i=2,...,7;d from appropriate sets}

and abstraction:

I={c(d):i=2,...,7; d from appropriate sets}.
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Now, let S” denote stack S with contents o; then we can define processes {y,:0 a
node-name} by the following equation:

Y,=t,00,4(P||S°|R[0d|b),  yo=Tu(¥s)

(this equation indeed defines a process since all equations for P, S, R, SE, ib are
guarded).

Claim. y,=1x,.

Proof. We show processes y, satisfy the seven defining equations for x,, multiplied
by .
(1) od(e)=0, so Ib(c*0) =3. Then

Yo=11°0u(P| S7| R 0d|b)
=1y(cs(start)cs(0)cs(0)cy(start)cy(d)c(8)cs(stop)ca(stop)es(stop)s) =78.
(2) od(o)=1 and (0od(a*0) >0 or Ib(c*0*0)=38). Then
Yo=71°0u(P| 87| R| od|b)
=1(cs(start)c;(1)cs(0)cy(start)cy(1b(c™*0))
- 0a(1(0*0))3 1 (Prncovoy | S7° [ 12(0)R || od [[16))
=17 -1, (Ib(a*0)cx(0) - 3,1 (P | S || R|| od | {b)
=1lb(0*0)r; © 8, (P|| S| R||od || 1b) = 71b(*0) y, .
(3) od(o)=1 and lb(o*0*0)=. Then
Yo=71°0x(P||S7||R|/0d| Tb)
=11b(0*0)y,mo = 7Ib(0*0)1; 0 3, (P S| R || od || B)
=7lb(o™*0)1; (c;5(start)c;(0)cs(0)
- Cq(start)ca()eca({)cs(stop)ca(stop)cs(stop))
= 11b(*0)r = tlb(5*0).

(4) od(o)=2, both (0d(c*0)>0 or Ib(c*0*0)=3) and (od(c*1)>0 or
1b(c*1*0)=3). Then

Yo=71°3u(P| 87| R|0d|b)
= "r:(Ca(start)cs(2)c5(0)c4(start)c4(1b(0*0))c5(0)c5(1)
C4(Start)c4(lb(0*1))cs(1)Cz((lb(U*O), Ib(a*1)))

3H<P<lb(a*o>,lb<c*n> [ ( ) 1 rz(i)s5(i)R) lod] TB))

1=0,
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=17, (Ib(c*0)c;(0)cs(0)3x (P | S| R | od [ 1b)
+1b(a*1)es(1es(an (P S7" | R || 0d [16))
=1(1b(0*0) yyuo+16(*1) Yy, ).
(5) od(o)=2 and (0d(o*0) >0 or Ib(c*0*0) =8) but Ib(a*1*0) =. Then
Yo =T(1b(0*0) oo +1b(0*1) y,u,) = 7(Ib(0*0) y, 0 +1b(*1)71)
=7(1b(d*0) y o +1b(a*1)).
(6) and (7): likewise. O (of Claim)
Now we will give a finite guarded recursive specification with a unique solution
h, so that g =7y(h). We have three cases (X is the designated element).
Case 1: od(g)=0. The root has out-degree 0, so since graph —o— is not in G,,

we have g =—03 and we can define X =3.
Case 2: od(g)=1. Suppose |b(0) = a. Then

X =at;o3,4(P| To||R|0d|ib) = aY,.
Case 3: od(g)=2. Suppose Ib(0)=a and Ib(1) =b. Then
X =at, 23, (P| To|| R [od||1b)+ bt, 28, (P T, | R od || ib).

We see that this is a finite guarded specification. Moreover, since y, =1x,, it is
clear that ,(h) satisfies the equation for X,, whence g <5 7,y(h). This finishes
the proof of Theorem 6.8. [

Corollary 6.9. Let g € G, be computable. Theng = 7,(k), where k is recursively definable
by a finite guarded specification.

Proof. Put h =t{,(g), the graph with all r-labels replaced by t'-labels, where t’ is
some new atom. Since h is computable, binary but also bounded, by Theorem 6.8
there is a specification E with unique solution k such that h £, 7, (k). It easily
follows that

g s Tey(h) 205 Ty (k). ([

Thus, we removed the restriction that g must be bounded. Next, we will remove
the restriction that g must be binary. First we need a lemma.

Lemma 6.10. Let g€ Gy,. Then g <4 h, for some h € Gy, of which all non-root nodes
have out-degree 0 or 2. If, moreover, g is computable, h is also computable.

Proof. We can assume that g is root-unwound (so g € G§, ), and coded (see Definition
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6.1). We define h as follows:
(1) nopEes(h) ={(s, n): s € NODEs(g), 5 # ROOT(g), n <out-degree(s)}
u{(s, 0): s € NopEs(g), and s =RrRoOT(g) or out-degree(s) = 0}.

(2) ebces(h) = { 5((1,0)):(5) - (De epGES(g), s =RrOOT(g)

(n<od(s) the name of the edge, I a label)}
U {; ® —(DeEDGEs(g), s #Rr00T(g) (n, I as above)}
U {@s n) (s, n+1)):s€ NODES(g), s #r00T(g) [(n+1) <od(s), | a label]}
v {is € NODES(g), s #R00T(g) [(n+1)=0d(s), | a label]}.

(3) rooT(h)={(rOOT(g), 0).
(4) The endpoint label of (s, 0) € NoDES(h) is the endpoint label of s € NODES(g).
An example might clarify the matter (Fig. 35).

Fig. 35.

It is obvious that h is root-unwound, that all non-root nodes have out-degree 2
or 0 and that if g is computable, then so is h. Now we can define R<
NoDEs(g) X NoDEs(h) as follows: R relates all nodes s € NODEs(g) with all (s, n) €
NoDEs(h) (n<od(s) or n=0=o0d(s)).

It is easy to prove that R:g <, h:

(1) If @—} (@ is an edge in g with label ! (n<od(s)) and R(s, (s, k)), then

(1.1) if k=< n, take path

(e (G k+ 1) -+ (s nD((1.0)
in h with A-label [ and R(t, (t, 0));
(1.2) if k> n, take path

X2 R (T O ) o (ON0) s SRR () £ (X))

in h with A-label I and R(t,(t, 0)).
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(2) Conversely, for each edge (l) (1,0)) in h we have @—;‘7 @® in g

(3) Endpoints and root are alright since nothing is changed there. [

Theorem 6.11. Let g be a computable graph. Then g =,(h), where h is recursively
definable by a finite guarded specification.

Proof. By Lemma 6.10, we can assume that all non-root nodes of g have out-degree
2 or 0. Put h=t.,,(g), and code h such that functions od, Ib for h are computable
with process representations 63, ib. Let the root have out-degree ny>0 (if ny=0,
h =3). For all non-root nodes, we will use the specifications for P, S, R given in
the proof of Theorem 6.8, with the only difference that the first element of stack S
can be any number up to n,. Then h is given by the following specification E:

X=3 Ib(i) t;°0,4(P| T, R|od|b),

i<ng

P, S, T, R,0d, b, H, I given in the proof of Theorem 6.8.

We see that E is finite and guarded, and that h is a solution of E, using Theorem
6.8 and Corollary 6.9. O

Remark 6.12. When we want to translate the trick in the proof of Lemma 6.10 in
the graph-model to the theory of ACP,, we have to use an extended version of
KFAR. The details of this translation are not clear, however.

7. Computably recursively definable processes

In Section 6, we looked at computable graphs. In this section, we will discuss
computable recursive specifications, and show that any process, recursively definable
by a computable specification is already definable by a finite specification. First a
remark about coding.

Remark 7.1 (coding). It is not hard to give a computable injective coding function
with computable inverse from all finite ACP,-terms to natural numbers, so we will
not mention this function in the following.

Definition 7.2. Let E ={E,:n<w} be a specification. E is computable if the function
f:n—T, is computable (T, is the right-hand side of the equation for X,,).

Lemma 7.3. Let E be a computable guarded recursive specification, in which no
abstraction operator occurs. Then, for each n < w, we can computably find an expansion
of T, in which each occurring variable is guarded.
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Proof. In a finite ACP, -term, it is easy to compute which variables are guarded,
and which are not, using Definition 5.5. Therefore, we can compute a guarded
expansion of each T, as in the proof of Lemma 5.10. O

Lemma 7.4. Let E be a computable guarded recursive specification, in which no
abstraction operator occurs. Then E has a computable solution in Gy, .

Proof. First, note that all graph operations defined in Section 3.2 are computable,
so that if graphs g, h are computable (as defined in Definition 6.5), then so are
graphs g+h,g-h, gllh gLk glh 9u(g), 7:(2), m.(g) and t;(g) (defined in
Definition 5.15). Thus, we see that the canonical graph of each finite ACP, -term is
computable, so we obtain from the proof of Theorem 5.11 and Lemma 7.3 that each
computable guarded specification without abstraction has a computable sol-
ution. [0

Corollary 7.5. If x is a process such that x =x,(y), where y is the solution of a
computable guarded specification without abstraction, then also x =1,(z), where z is
the solution of a finite guarded specification without abstraction.

Proof. Combine Theorem 6.11 and Lemma 7.4. O

8. The role of abstraction

In this last section, we show that the abstraction operator T; plays an essential
role in the previous sections. In particular, we show that Theorem 7.5 does not hold
if we cannot use abstraction. Our conclusion is that the defining power of theory
ACP, is much greater than the defining power of theory ACP (where ACP is the
theory given by the left-hand column of Table 1).

Definition 8.1. Let the set of atoms A contain two elements a, b different from 3.
Let a function f:w-{a, b} be given. We define a recursive specification E’ =
{E):n<w} by

EJ; =f(n)E{n+1-

It is obvious that E/ is a guarded specification without abstraction, which is
computable if f is computable. E/ has a unique solution by RDP+ RSP, which we
call x* (x"=f£(0)f(1)f(2)...). By Theorem 7.5, each x’ for computable f is the

abstraction of a process, definable by a finite guarded specification without
abstraction.

Theorem 8.2. There exists a computable function f:w - {a, b} such that process x’
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(defined in Definition 8.1) is not recursively definable by a finite guarded specification
in which no abstraction operator occurs.

Proof. We can enumerate all finite guarded specifications without abstraction in a
list (E,:n <w). By Theorem 5.11, we can, for each n < w, construct a graph g, € Gy,
of which all levels are finite such that g, is a solution of E,. By Lemma 7.4, each
g. is computable. Now, to each specification E, (n<w) we assign a function
friw~>{a, b} in the following way:
® f (k)=a if all edges in g, starting from a node at depth k have label qa;
e f (k)=b otherwise.
Since all g, have all levels finite, it follows that all f, are computable functions.
Now, it follows immediately that if E, defines a process x, it must be x’. Thus,
the set of all processes x’ recursively definable by a finite guarded specification
without abstraction is included in {x’» : n < w}. Now we define a computable function
f:w->{a, b} by
o ={8 1=t
if f,(n)=a.

f is not among {f,:n> 0}, so process x’ is not recursively definable by a finite
guarded specification without abstraction. [J
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